

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url : https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.242

SEASONAL INCIDENCE AND EFFECT OF WEATHER PARAMETERS ON POPULATION DYNAMICS OF BRINJAL SHOOT AND FRUIT BORER, LEUCINODES ORBONALIS (GUENEE) IN BRINJAL CROP

Tekchand Nayak^{1*}, Gaje Singh¹, Saurabh Padamshali², Hitesh Kashyap³, Sandeep Kumar¹ and Anagha Anil¹

¹Department of Entomology, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut (U.P.), India
²Department of Entomology, College of Agriculture & Research Station, Gariaband (IGKV) C.G., India
³Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur (C.G.), India
*Corresponding authors E-mail:nayaktekchand86@gmail.com
(Date of Receiving: 01-08-2025; Date of Acceptance: 09-10-2025)

Agriculture & Technology, Meerut. The shoot infestation was commenced at 20 days after transplanting and infestation was recorded in 36th standard week as 3.22 percent and reached to a peak level (24.68 percent shoot infestation) on 42th standard week. At peak level of shoot infestation, the minimum and maximum temperature were 18.9°C and 34.2°C, evening and morning relative humidity 63.3°C and 77.3°C percent, respectively and rainfall of 0.0 mm. The shoot infestation started declined (18.30 percent) during 43th standard week when the maximum and minimum temperature, relative humidity at morning and evening and rainfall were 33.5°C and 18.8°C, 82.3 percent and 67.9 percent and 0.0 mm, respectively. The fruit infestation was commenced at 50 days after transplanting and infestation was recorded in 40th standard week as 8.22 percent and reached to a peak level (29.60 percent fruit infestation) on 44th standard week. At peak level of fruit infestation, the minimum and maximum temperature were 18.0°C and 33.0°C, evening and morning relative humidity 68.7°C and 83.9°C percent, respectively and rainfall of 0.0 mm. The fruit infestation started declined (24.80 percent) during 45th standard week when the maximum, minimum temperature, relative humidity at morning and evening and rainfall were 30.8°C, 16.8°C, 94.1 percent, 75.6 percent and 0.0 mm, respectively. Correlation studies revealed that the shoot infestation by brinjal shoot & fruit borer, L. orbonalis showed positive non-significant correlation with maximum temperature (r = 0.334) and minimum temperature (r = 0.052) whereas, non-significant negative correlation was recorded with morning relative humidity (r = -0.072), evening relative humidity (r = -0.146) and rainfall (r = -0.356). The fruit infestation by brinjal shoot & fruit borer, L. orbonalis showed positive non-significant correlation with morning relative humidity (r = -0.063) whereas, negative significant correlation was recorded with minimum temperature (r = -0.732*) and (Byx = -1.255) and rainfall (r = -0.581*) and negative non-

The experiment was carried out in a randomized complete block design with three replications during the *Kharif* season, 2024 at the Crop Research Centre of Sardar Vallabhbhai Patel University of

Keywords: Brinjal, Seasonal incidence, *L. orbonalis*, Shoot infestation, Fruit infestation, Weather parameters, Correlation.

significant correlation with maximum temperature (r = -0.474) and evening relative humidity (r = -0.474)

Introduction

0.262).

The crop known as brinjal (*Solanum melongena* Linn.) is member of genus Solanum and family Solanaceae. It is widely referred to as the "King of vegetables", and is believed to have originated in the

Indian sub-continent (Gleddie *et al.*, 1986). It is also called aubergine (French word) in Europe, guinea squash (English) in Southern America. It is annual hermaphrodite crop that often self- fertilizes. The world cultivated area for brinjal (eggplant) was approximately 19.24 lakh hectare (FAO, 2023). It is

ABSTRACT

mostly bushy plant with broad leaves, purple or white flowers and typical height of 2-4 feet. It is the most widely grown vegetable crop in India with the exception of higher elevations and it is grown in world throughout the year. The primary reason of brinjal crop is grown mainly for its delicate young fruits. Across the globe, they are primarily consumed as a cooked vegetable and used in preparing a variety of dishes in different regions. Popular worldwide recipes include baingan bharta, ratatouille, moussaka and baba ganoush. They are also utilized for making pickles and dehydrated products. Brinjal is a versatile and nutrientrich vegetable used in various cuisines around the world. Brinjal is known for its glossy purple, green or white fruits which come in various shape and size. It is valued for its culinary versatility and nutritional content particularly its fiber, antioxidants and lowcalorie profile. Nutritionally it is a better source of vitamins (especially Vitamin B) and antioxidants including phenolic acids, flavonoids and anthocyanins which is found in the purple skin. It helps to prevent arteriosclerosis by blocking cholesterol absorption, lowers body fat levels and contains polyphenols that aid in combating cancer (Daunay et al., 2000). In the world during 2022-23, approximately 18.94 lakh hectares area were designated for brinjal cultivation yielding 593 lakh tonnes with a production rate of 31383 kg/ha. This positions of brinjal production are the fifth most economically significant production among the solanaceous crops. In India for the year 2022-23, the area reported to brinjal cultivation was 6. 79 lakh hectares producing 129. 33 lakh tonnes compared to the 127. 65 lakh tonnes produced from 6. 75 lakh hectares in 2021-22. Higher acreage was covered in West Bengal 1.69 lakh ha, Odisha 1.26 lakh ha, Gujarat 0.79 lakh ha, Madhya Pradesh 0.67 lakh ha, Bihar 0.58 lakh ha, Chhattisgarh 0.39 lakh ha, Andhra Pradesh 0.05 lakh ha and Telangana 0.03 lakh ha (Anonymous, 2023). In Uttar Pradesh it's cultivated area was 20,000 ha and productivity of 30.65 t/ha. Uttar Pradesh ranked 11th in terms of brinjal production that was 312.98 tonnes in 2021-22. Uttar Pradesh shared 2.45% in brinial production of India. Among different districts of Eastern Uttar Pradesh Ayodhya was highest production of Brinjal in 2020-21 and that was 7.965 MT (Directorate of Economics & Statistics, Govt. of U.P. 2022). Brinjal crops are susceptible to infestation by various insect pests that can greatly reduce their yield and quality. Among these, the brinjal shoot and fruit borer, Leucinodes orbonalis (Guenee), is the most serious and destructive monophagous pest affecting brinjal. This pest remains active during the rainy and summer seasons and has a

distinct feeding pattern. It is considered a serious threat capable of reducing crop yield by 60–70 percent.

Materials and Methods

The field experiment for the present studies was conducted at Crop Research Centre (C.R.C.) of Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut. (U.P.). The University is situated at the distance of about 10 km from Meerut city on Delhi Dehradun National Highway (NH-58) and it lies between 29° 17' North latitude and 77° 42' East longitudes at an altitude of 237 meters above mean sea level. The total geographical area of Meerut district is 2564 km². Meerut is located in the North-east of Delhi in western plain zone of Uttar Pradesh and has Sub tropical climate. The climate of this region is characterized as semi-arid and sub-tropical. The summer is very hot and dry while winters are too cold. Moderate rainfall and wide temperature variation is the characteristic features of the semi-arid and sub-tropical climate. Generally, south-west monsoon sets in the third of fourth week of June, reaches its peaks in July and August and continues up to September, cyclonic weather leads to few winter rains. The area receives mean rainfall of 845 mm, of which 80-90 per cent is received from June to September. The mean minimum temperature reaches low as 3°C in winters, while during summer the mean maximum temperature varies from 43-45°C. Each treatment plot measured 4 x 3 m². Seeds of brinjal variety "Pusa Uttam" collected from Indian Agriculture Research Institute (IARI), New Delhi and nursery was raised at High-tech polyhouse Horticulture Research Centre (H.R.C.) of SVPUA&T, Meerut. Ten trays were required for nursery preparation. After preparation of nursery plants, 30 days old seedlings of nursery were transplanted in a plot size 4×3 m². At the time of transplanting, the roots of the seedlings were dipped in a solution of Bavistin (2g/litre of water). Transplanting was done during evening hours at spacing 70× 60 cm and light watering was given after transplanting. 30 plants were transplanted in each plot replication wise. A total of 735 plants were transplanted in field.

The daily meteorological data pertaining to temperature, relative humidity and rain fall during experimental period were collected from meteorological observatory of Department of Soil Science, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110 (U.P.). The incidence of brinjal shoot and fruit borer was recorded at weekly interval on randomly selected five plants from each spot starting from 7 days after transplanting to the late stage of the cropping season

from untreated control/check plot. Total number of healthy shoots and number of infested shoots of five randomly selected plants were observed for shoot infestation. There after its incidence was noticed by each fruit picking on randomly selected five plants. The numbers of healthy and damaged fruits of five randomly selected plants were counted at each picking. The seasonal fluctuation in the activity of brinjal shoot and fruit borer was observed by recording percentage of infested fruits at each picking. The population data of pest was subjected to statistical analysis to find out the simple correlation with abiotic factors using by the Karl Pearson formula for correlation coefficient.

$$r_{xy} = \frac{\sum x - \frac{\sum x \sum y}{n}}{\sqrt{\left[\sum x2 - \frac{\sum x2}{n}\right]\left[\sum y2 - \frac{\sum y2}{n}\right]}}$$

Where.

 r_{xy} = Simple correlation coefficient

X = Variable i.e. abiotic component

Y = Variable i.e. mean number of insect pests

n = Number of Observation

Results and Discussion

Effect of weather parameters on brinjal shoot and fruit borer, *Leucinodes orbonalis* (Guenee) in relation to shoot infestation during *kharif*, 2024

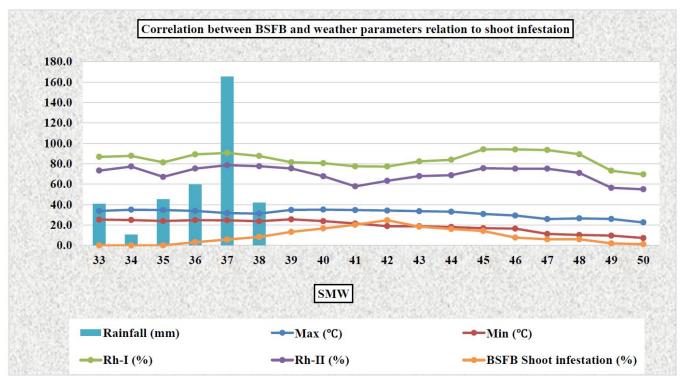
The results regarding the seasonal incidence and effect of weather parameters on brinjal shoot and fruit borer, L. orbonalis relation to shoot infestation was presented in table 1 and depicted in figure 1.0. During kharif, 2024. The shoot infestation by brinjal shoot and fruit borer ranged from 1.18 to 24.68 percent. The shoot infestation was commenced at 20 days after transplanting and infestation was recorded in 36th standard week (1st week of September) as 3.22 percent. After this, shoot infestation increased gradually and reached to a peak level (24.68 percent shoot infestation) on 42th standard week (second week of October to third week of October). At peak level of shoot infestation, the minimum and maximum temperature were 18.9°C and 34.2°C, evening and morning relative humidity 63.3°C and 77.3°C percent, respectively and rainfall of 0.0 mm. The shoot infestation started declined (18.30 percent) during fourth week of October (43th standard week) when the maximum and minimum temperature, humidity at morning and evening and rainfall were 33.5°C and 18.8°C, 82.3 percent and 67.9 percent and 0.0 mm, respectively. The minimum shoot infestation of L. orbonalis (1.18 percent per five plants) were recorded during 50th standard week (second week of

December) when the maximum and minimum temperature, relative humidity at morning and evening and rainfall were 22.5°C and 7.3°C, 69.6 percent and 55.0 percent and 0.3 mm, respectively.

Effect of weather parameters on brinjal shoot and fruit borer, *Leucinodes orbonalis* (Guenee) in relation to fruit infestation during *kharif*, 2024

The results regarding the seasonal incidence and effect of weather parameters on brinjal shoot and fruit borer, L. orbonalis (Guenne) relation to fruit infestation was presented in table 2 and illustrated in figure 2.0. During *kharif*, 2024. The fruit infestation by brinjal shoot and fruit borer ranged from 8.22 to 29.60 percent. The fruit infestation was commenced at 50 days after transplanting and infestation was recorded in 40th standard week (4th week of September to 1st week of October) as 8.22 percent. After this, fruit infestation increased gradually and reached to a peak level (29.60 percent fruit infestation) on 44th standard week (4th week of October to 1st week of November). At peak level of fruit infestation, the minimum and maximum temperature were 18.0°C and 33.0°C, evening and morning relative humidity 68.7°C and 83.9°C percent, respectively and rainfall of 0.0 mm. The fruit infestation started declined (24.80 percent) during second week of November (45th standard week) when the maximum. minimum temperature, relative humidity at morning and evening and rainfall were 30.8°C, 16.8°C, 94.1 percent, 75.6 percent and 0.0 mm, respectively. The minimum fruit infestation of L. orbonalis (8.22 percent per five plants) were recorded during 40th standard week (4th week of September to 1st week of October) when the maximum and minimum temperature, relative humidity at morning and evening and rainfall were 35.0°C and 23.8°C, 80.6 percent and 67.7 percent and 0.3 mm, respectively.

The present findings are similar with Kumar *et al.* (2018) revealed that the initial incidence of the BSFB on shoot was occurred on the 40th standard week (First week of October) and reached the peak in the 43th standard week (Last week of October- 1st week of November); whereas initial incidence of the BSFB on fruit was occurred on the 42nd standard week (Third week of October) and reached the peak in the 45th standard week (2nd week of November). The present finding concord with the findings of Gangwar and Singh (2014) who also reported *L. orbonalis* infestation started from the last week of August and remained till last week of December *i.e.* this pest was found infesting the crop throughout the crop season.


Correlation between brinjal shoot & fruit borer, Leucinodes orbonalis (Guenee) and weather parameters during kharif, 2024

After analyzed the data of correlation (r) between brinjal shoot & fruit borer population and weather parameters, the result revealed that the shoot infestation by brinial shoot & fruit borer, L. orbonalis showed positive non-significant correlation with maximum temperature (r = 0.334) and minimum temperature (r = 0.052) whereas, non-significant negative correlation was recorded with morning relative humidity (r = -0.072), evening relative humidity (r = -0.146) and rainfall (r = -0.356) during kharif, 2024 (Table 3). The correlation (r) between brinjal shoot & fruit borer population and weather parameters, the result revealed that the fruit infestation by brinjal shoot & fruit borer, L. orbonalis showed positive non-significant correlation with morning relative humidity (r = -0.063) whereas, negative significant correlation was recorded with minimum temperature (r = -0.732*) and (Byx = -1.255) and rainfall (r = -0.581*) and negative non-significant correlation with maximum temperature (r = -0.474) and evening relative humidity (r = -0.262) (Table 4).

The current findings are in agreement with findings of Baldev Ram et al. (2018), who revealed that the shoot damage showed a non-significant correlation with minimum temperature (r = 0.37) and rainfall (r = -0.28). Regarding fruit infestation, there was a significant negative correlation with maximum temperature (r = -0.77 based on number and r = -0.80based on weight), minimum temperature (r = -0.86based on number and r = -0.87 based on weight), and rainfall (r = -0.59 based on number and r = -0.56 based on weight). The present findings are in agreement with those of Gupta et al. (2023), who observed that shoot damage caused by L. orbonalis showed a positive and significant correlation with minimum temperature (r = 0.509). Furthermore, the percent fruit damage by L. orbonalis was significant negative correlations with minimum temperature (r = -0.831*), rainfall (r = -0.534*), evening relative humidity (r = -0.923*) and Maximum temperature showed a negative but nonsignificant correlation (r = -0.225) with fruit damage.

Table 1: Seasonal incidence and effect of weather parameters on population dynamics of brinjal shoot and fruit borer, *Leucinodes orbonalis* (Guenee) relation to shoot infestation during *kharif*, 2024

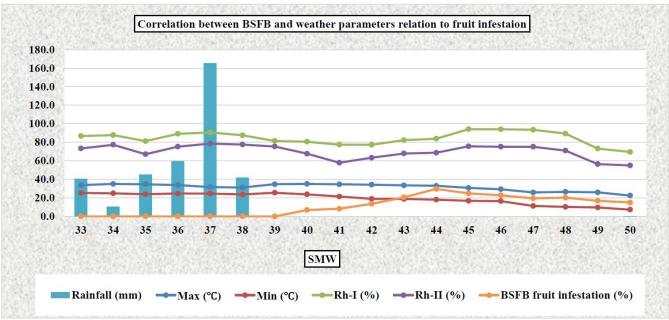

SW	Month & Date	Temperature (°C)		Relative humidity (%)		Rainfall	Shoot infestation
		Max (℃)	\mathbf{x} (\mathbf{C}) Min (\mathbf{C}) Morning (\mathbf{W}) Evening (\mathbf{W})		Evening (%)	(mm)	(%)
33 th	12 Aug 18 Aug.	33.7	25.3	86.7	73.3	40.7	0.00
34 th	19 Aug 25 Aug.	35.0	24.9	87.7	77.3	10.6	0.00
35 th	26 Aug. – 1 Sep.	34.7	23.9	81.3	67.1	45.2	0.00
	2 Sep. – 8 Sep.	33.7	24.7	89.1	75.3	59.8	3.22
37 th	9 Sep. – 15 Sep.	31.7	24.6	90.6	78.6	165.4	5.78
38 th	16 Sep. – 22 Sep.	31.1	23.7	87.6	77.6	42.0	8.22
39 th	23 Sep. – 29 Sep.	34.7	25.5	81.4	75.4	0.0	13.22
	30 Sep. – 6 Oct.	35.0	23.8	80.6	67.7	0.0	16.62
41 th	7 Oct. – 13 Oct.	34.6	21.4	77.4	57.9	0.0	20.22
42 th	14 Oct. – 20 Oct.	34.2	18.9	77.3	63.3	0.0	24.68
43 th	21 Oct. – 27 Oct.	33.5	18.8	82.3	67.9	0.0	18.30
44 th	28 Oct 3 Nov.	33.0	18.0	83.9	68.7	0.0	16.11
45 th	4 Nov. – 10 Nov.	30.8	16.8	94.1	75.6	0.0	13.20
46 th	11 Nov. – 17 Nov.	29.3	16.4	94.0	75.1	0.0	14.18
47 th	18 Nov. – 24 Nov.	25.8	11.3	93.4	75.1	0.0	7.68
48 th	25 Nov. – 1 Dec.	26.5	10.2	89.3	71.0	0.0	6.00
49 th	2 Dec. – 8 Dec.	25.9	9.6	73.1	56.4	0.0	2.02
50 th	9 Dec. – 15 Dec.	22.5	7.3	69.6	55.0	0.3	1.18

Fig. 1 : Seasonal incidence and effect of weather parameters on population dynamics of brinjal shoot and fruit borer, *Leucinodes orbonalis* (Guenee) relation to shoot infestation during *kharif*, 2024.

Table 2 : Seasonal incidence and effect of weather parameters on population dynamics of brinjal shoot and fruit borer, *Leucinodes orbonalis* (Guenee) relation to fruit infestation during *kharif*, 2024.

00101	ster, Leucinodes orbonaus (Guenee) relation to mult infestation during knary, 2024.						
SW	Month & Date	Temperature (°C)		Relative humidity (%)		Rainfall (mm)	Fruit infestation
		Max (℃)	Min (℃)	Morning (%)	Evening (%)		(%)
33^{th}	12 Aug 18 Aug.	33.7	25.3	86.7	73.3	40.7	0.00
34 th	19 Aug 25 Aug.	35.0	24.9	87.7	77.3	10.6	0.00
35 th	26 Aug. – 1 Sep.	34.7	23.9	81.3	67.1	45.2	0.00
36 th	2 Sep. – 8 Sep.	33.7	24.7	89.1	75.3	59.8	0.00
37 th	9 Sep. – 15 Sep.	31.7	24.6	90.6	78.6	165.4	0.00
38 th	16 Sep. – 22 Sep.	31.1	23.7	87.6	77.6	42.0	0.00
39 th	23 Sep. – 29 Sep.	34.7	25.5	81.4	75.4	0.0	0.00
40 th	30 Sep. − 6 Oct.	35.0	23.8	80.6	67.7	0.0	8.22
41 th	7 Oct. – 13 Oct.	34.6	21.4	77.4	57.9	0.0	12.18
42 th	14 Oct. – 20 Oct.	34.2	18.9	77.3	63.3	0.0	13.60
43 th	21 Oct. – 27 Oct.	33.5	18.8	82.3	67.9	0.0	20.60
44 th	28 Oct 3 Nov.	33.0	18.0	83.9	68.7	0.0	29.60
45 th	4 Nov. − 10 Nov.	30.8	16.8	94.1	75.6	0.0	24.80
46 th	11 Nov. – 17 Nov.	29.3	16.4	94.0	75.1	0.0	22.76
47 th	18 Nov. – 24 Nov.	25.8	11.3	93.4	75.1	0.0	19.44
48 th	25 Nov. – 1 Dec.	26.5	10.2	89.3	71.0	0.0	20.22
49 th	2 Dec. − 8 Dec.	25.9	9.6	73.1	56.4	0.0	16.86
50 th	9 Dec. – 15 Dec.	22.5	7.3	69.6	55.0	0.3	15.03

Fig. 2 : Seasonal incidence and effect of weather parameters on population dynamics of brinjal shoot and fruit borer, *Leucinodes orbonalis* (Guenee) relation to fruit infestation during *kharif*, 2024

Table 3: Correlation between brinjal shoot & fruit borer and weather parameters relation to shoot infestation during *kharif*, 2024

Season	Weather parameters	Correlation coefficient (r)	'Byx'
	Max. Temp (°C)	0.334^{NS}	-
	Min. Temp. (°C)	0.052^{NS}	-
Kharif, 2024	Relative humidity Morning (%)	-0.072^{NS}	-
	Relative humidity Evening (%)	-0.146 ^{NS}	-
	Rainfall (mm)	-0.356 ^{NS}	-

^{*}Significance at 5% level (P = 0.05)

Table 4 : Correlation between brinjal shoot & fruit borer and weather parameters relation to fruit infestation during *kharif*, 2024

Season	Weather parameters	Correlation coefficient (r)	'Byx'
	Max. Temp (°C)	-0.474 ^{NS}	-
	Min. Temp. (°C)	-0.732*	-1.255
Kharif, 2024	Relative humidity Morning (%)	0.063^{NS}	-
	Relative humidity Evening (%)	-0.262 ^{NS}	-
	Rainfall (mm)	-0.581*	-0.122

^{*}Significance at 5% level (P = 0.05)

Conclusions

The correlation between brinjal shoot and fruit borer and weather parameters relation to shoot infestation was found positive non-significant correlation with maximum temperature and minimum temperature whereas, non-significant negative correlation was recorded with morning relative humidity, evening relative humidity and rainfall during *kharif*, 2024. The fruit infestation by brinjal shoot & fruit borer, *L. orbonalis* showed positive non-significant correlation with morning relative humidity

whereas, negative significant correlation was recorded with minimum temperature & rainfall and negative non-significant correlation with maximum temperature and evening relative humidity.

Acknowledgments

The authors gratefully acknowledge Dr. K.K. Singh, Hon'ble Vice-Chancellor, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut (U.P.), India, for extending financial assistance and necessary facilities that made this research

NS – Non-significant

NS- Non-significant

possible. Special thankful to Dr. Gaje Singh, Professor, Department of Entomology for his constant guidance, valuable suggestions and support during the entire course of the investigation.

References

- Amandeep, Singh G., Verma. P.K., Varma, A. and Chaudhary R. (2023). Seasonal incidence of rice stem borer and rice leaf folder in relation to weather factors in basmati rice. *The Pharma Innovation Journal*, SP-11(7), 3227-3231.
- Anonymous, 2023. Telangana Horticulture Database; c2023. Available from https://horticulture.tg.nic.in/.
- Chetan Nandi, Gangadhar Narabenchi, Sanjeev Jakatimath and M. V. Prafulkumar (2017). Seasonal incidence of brinjal shoot and fruit Borer, *Leucinodes orbonalis* Gueene, (Lepidoptera: Crambidae) during *kharif* season. *Int. J. Curr. Micro. App. Science* (2017) 6(12): 1088-1093.
- Mutkule, D.S., Patel, Z.P., Ghetiya, L.V., Singh, S. and Mote, B.M. (2017). Effect of weather parameters on seasonal abundance of brinjal shoot and fruit borer in south Gujart. *Journal of Agrometeorology*, **19**(2), 178-179.
- Prashanth, G., Sunitha, N. and Chavan, S.S. (2023). Population dynamics of major insect pests and their natural enemies in brinjal ecosystem. *Journal of Farm Sciences* 20 March 2023.
- Gupta, A., Chandrakar, G., Ashitosh, M., Sidar, R. (2021). Seasonal occurrence and impact of weather parameters on population dynamics of brinjal shoot and fruit borer (*Leucinodes orbonalis* Guenee) during *Kharif*, 2020-21. *The Pharma Innovation Journal*: SP-10(11), 262-265.
- Sardana, H.R., Bhat, M.N., Ahuja, D.B. and Sehgal, M. (2017).
 Validated Integrated Pest Management Strategies for Major Vegetable Crops. Technical Bulletin No.42., ICAR-

- National Research Centre for Integrated Pest Management, New Delhi pp 38.
- Kumar, N.A. and Kumar, A. (2018). Incidence of shoot and fruit borer, *Leucinodes orbonalis* guenee on brinjal in relation to weather parameters in allahabad region. *Journal of Plant Development Sciences*, **10**(6), 323-330.
- Nayak, U.S., Rath, K. and Khuntia, A. (2020). Effect of environmental factors on the seasonal incidence and infestation of *Leucinodes orbonalis* Guenee in summer brinjal under North Central Plateau Agro-climatic Zone of Odisha. *Journal of Crop and Weed*, 16(1), 229-235.
- Sheojat, N.K.S., Bhadauria, N., Kumar, N., Amar, C. and Shivani Suman (2022). Studies on the succession and incidence of major insect pests of Brinjal, *Solanum melongena* Linnaeus in Gwalior (M.P.). *The Pharma Innovation Journal* 2022; SP-11(7), 1560-1565.
- Shubham, Singh, R.B., Shankar, K., Upadhyay, A. and Dixit, P.S. (2021). Studies on the seasonal incidence of brinjal shoot and fruit borer (*Leucinodes orbonalis* Guenee) and its effective management. *The Pharma Innovation Journal*, SP-**10**(8), 370-374.
- Singh, P.L., Singh O.P., Singh, P.K. and Kumar, D. (2023). A study on trend analysis of area, production and productivity of brinjal in Uttar Pradesh. *The Pharma Innovation Journal* 2023; SP-12(7): 322-325.
- Tupe, A.P., Lad, A.G., Pawar, A.A., Khandare, R.Y. and Matre (2022). Seasonal incidence of major insect pests of brinjal in relation to weather parameters. *The Pharma Innovation Journal*, 11(12), 2606-2609.
- Umashankar, N. et al. (2014). Influence of Environmental Factors on Population Dynamics and Infestation Pattern of Leucinodes orbonalis in Winter Brinjal of Odisha. International Journal of Plant Research, 27(3), 244.